

Self-paced Ensemble for Highly Imbalanced Massive Data Classification

Zhining Liu*⁺, Wei Cao⁺, Zhifeng Gao⁺, Jiang Bian⁺, Hechang Chen⁺, Yi Chang⁺, and Tie-Yan Liu⁺

* School of Artificial Intelligence, Jilin University † Key Lab. of Symbolic Computation and Knowledge Engineering of MOE, Jilin University ‡ Microsoft Research

Presenter: Zhining Liu

April 22, 2020

36th IEEE International Conference on Data Engineering (ICDE 2020)

Table of contents

Challenges and Motivation

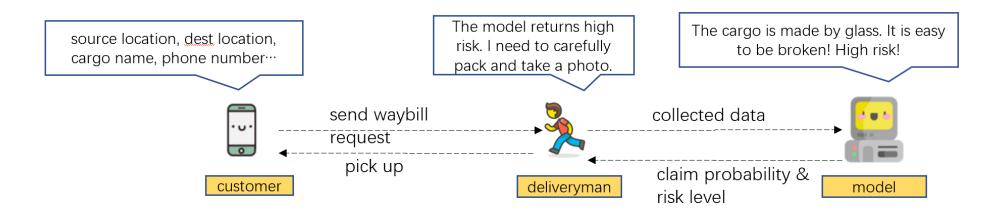
- Self-paced Ensemble
- Classification Hardness
- Practical Algorithm
- Experimental Results

Challenges

Emerging challenges from more *large-scale*, *extremely imbalanced* and *low-quality* datasets that come with the development of information systems (e.g., CTR, fraud detection, medical diagnosis).

Challenges

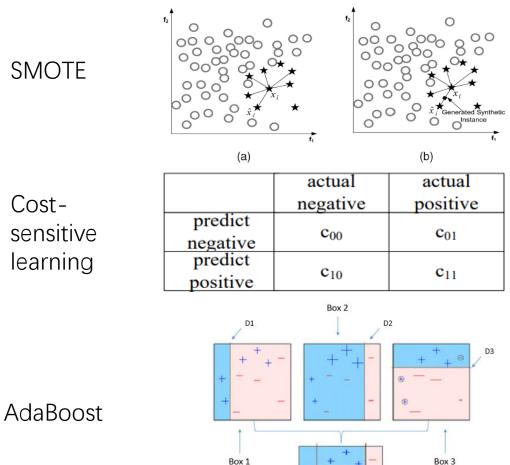
- An example: predict the claim probability of waybill orders
 - more than 3,000,000,000 samples in TB level
 - Imbalance Ratio (IR) = #negative : #positive = 3,000 : 1
 - sparse categorical features (e.g., user IDs)
 - lots of missing values (up to 90% in some columns)
 - noisy data



Prior work

- Resampling methods
 - oversample minority cases
 - undersample majority cases
- Reweighting methods
 - cost-sensitive learning
 - hard example mining
- Ensemble methods
 - Integrate resampling/reweighting methods into ensemble learning frameworks

Examples



Box 4

Drawbacks of existing solutions

Family	Branch	Representatives	Drawbacks
Resampling	random resampling		Unsatisfactory performance
	under-sampling	TomekLink, ENN, NearMiss	1. High cost for clustering/finding nearest neighbors on a large-scale dataset.
	over-sampling	SMOTE, ADASYN, Borderline-SMOTE	2. fail to work when the dataset is extremely imbalanced or contains many
	hybrid-sampling	SMOTE-Tomek, SMTOE-ENN	missing values. 3. Over-sampling methods further enlarge the size of the training dataset.
Reweighting	cost-sensitive learning	Cost-sensitive C4.5	1. Domain knowledge is required to set an
	hard example mining	AdaBoost, FocalLoss	appropriate cost matrix. 2. Sensitive to noises and outliers.
Ensemble	resampling/reweightin g + Ensemble Learning	RUSBoost, SMOTEBoost, SMOTEBagging	The aforementioned problems of resampling/reweighting methods still hold.

Motivation

We need a practical learning framework that can effectively handle *large-scale data* with *extreme class imbalance* while being robust to *missing values, noises,* and *outliers*.

Table of contents

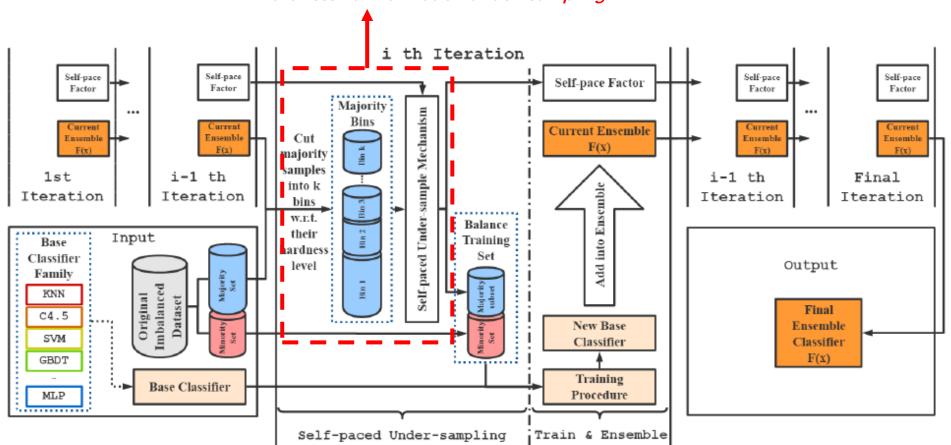
- Challenges and Motivation
- Self-paced Ensemble
- Classification Hardness
- Practical Algorithm
- Experimental Results

Self-paced Ensemble (SPE)

Challenge	
Large-scale data	
Extreme class imbalance	
Missing values	
Sparse categorical features	
Noises and outliers	

- Efficient ensemble training
 - Only need O(k · #pos) samples to build k-classifier ensemble
 - Introduce the "classification hardness"
 - Adaptive sampling without distance-computing
 - Self-paced Learning with hardness harmonization
 - robust to the outliers while ensuring fast convergence

Overview



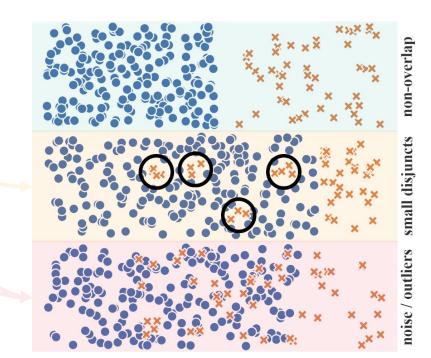
hardness harmonization under-sampling

Table of contents

- Challenges and Motivation
- Self-paced Ensemble
- Classification Hardness
- Practical Algorithm
- Experimental Results

Classification hardness

- Class imbalance is **NOT** the sole source of learning difficulties.
 - Other factors:
 - Small disjuncts problem
 - Presence of noises and outliers
 - Overlapped underlying class distribution
- We introduce "classification hardness distribution" to integrate all these factors into our learning framework.



Classification Hardness

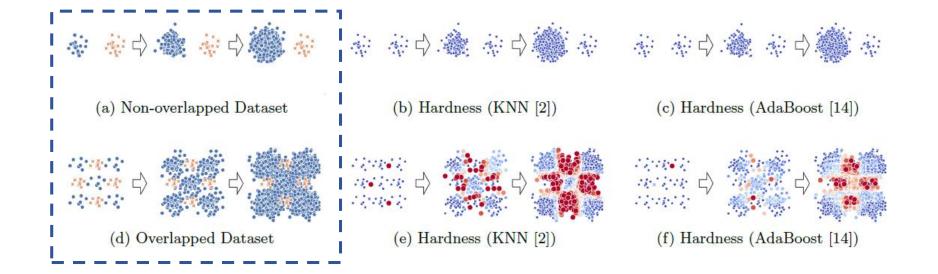
- What is "classification hardness"?
 - How hard is a sample to be correctly classified by the current model.
 - Can be given any "decomposable" error function
 - (e.g., absolute error, squared error, cross entropy)

Example (absolute error):

$$hardness_{x,y,F} = |F(x) - y|$$

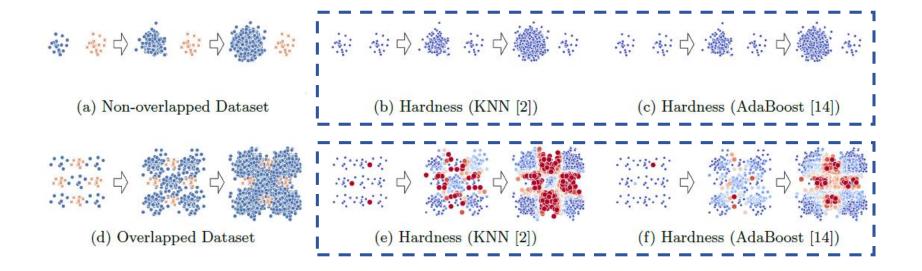
Hardness Distribution

- Fills the gap between imbalance ratio and task difficulty
 - Fig.(a) & Fig.(d) have the same imbalance ratio (IR) (1:1 to 1:100)
 - As the IR grows, Fig.(d) becomes a much harder classification task



Hardness Distribution

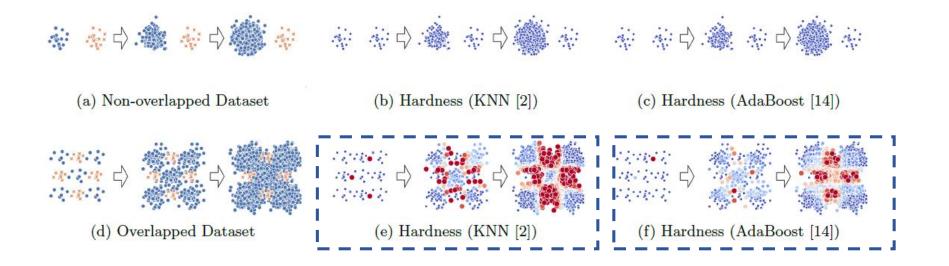
- Fills the gap between imbalance ratio and task difficulty
 - Fig.(a) & Fig.(d) have the same imbalance ratio (IR) (1:1 to 1:100)
 - Fig.(a) & Fig.(d) have the very different "classification hardness"



Hardness Distribution

• Fills the gap between model capacity and sampling strategy

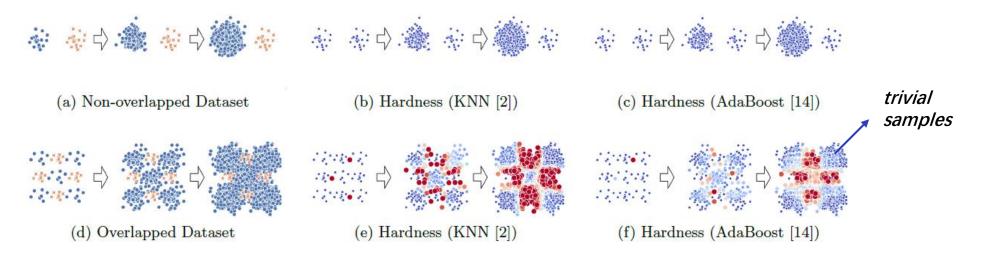
- Different learning models have very different capacities
- Hardness distribution can capture such difference that is ignored by other preprocessing methods such as SMOTE.



General types of data samples

• trivial samples (in blue)

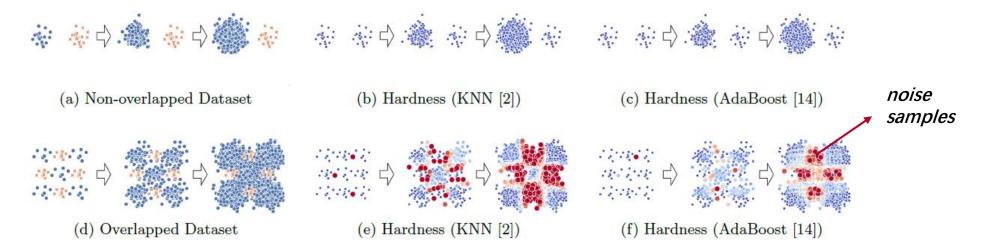
- only contribute tiny hardness
- large population, total hardness is non-negligible
- trivial samples do not provide new information for training:
 - reduce population, only keep the "skeleton"



General types of data samples

noise samples (in dark red)

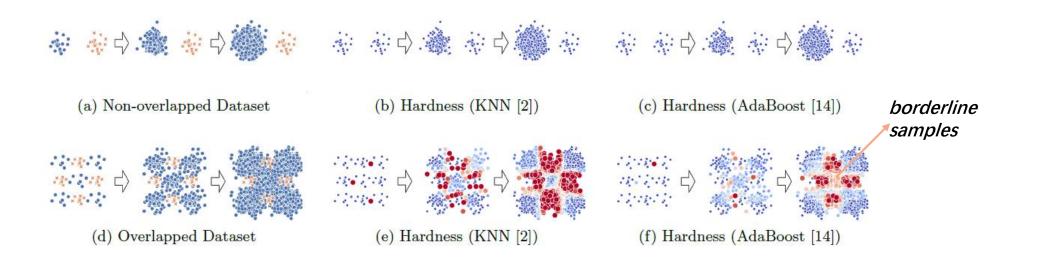
- small population
- each contributes a large hardness value
- noise samples can disturb the training process:
 - eliminate the noise, while keep useful information



General types of data samples

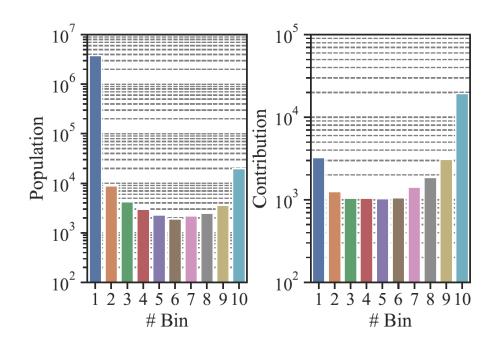
borderline samples (in light red)

- close to the decision boundary
- borderline samples are the most informative
 - enlarge the corresponding weights usually can be helpful



Hardness Histogram

- Identify samples under finer granularity:
 - use the current model to calculate the hardness
 - cut data into bins and form a histogram



$$B_{\ell} = \{(x,y) \mid \frac{\ell-1}{k} \le \mathcal{H}(x,y,F) < \frac{\ell}{k}\} \ w.l.o.g. \ \mathcal{H} \in [0,1]$$

Hardness histogram approximates the distribution of hardness values and implicitly reflects the task difficulty.

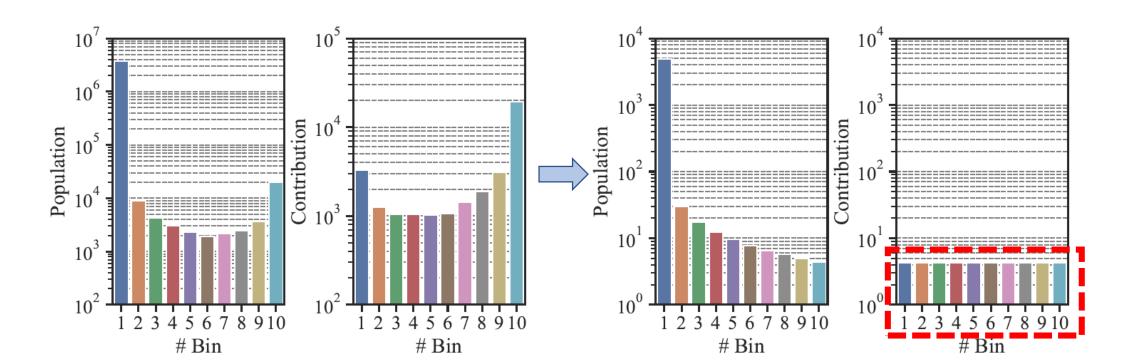
Table of contents

- Challenges and Motivation
- Self-paced Ensemble
- Classification Hardness
- Practical Algorithm
- Experimental Results

Our First Algorithm

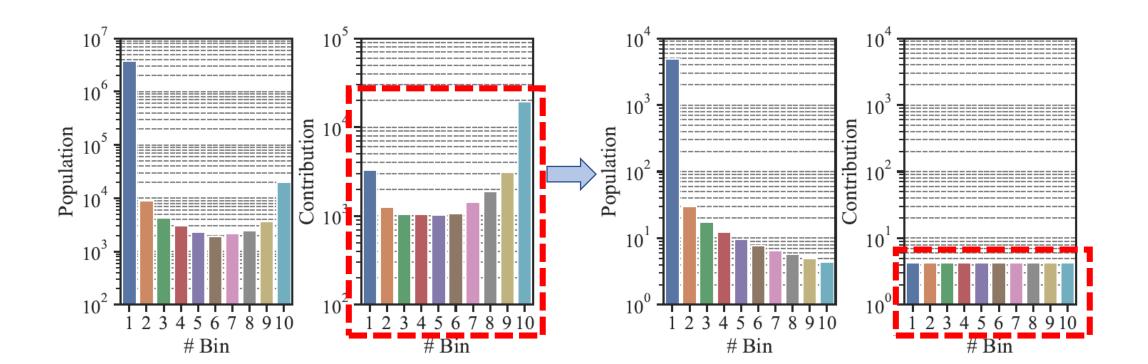
Hardness Harmonization

- Resampling to equalize the *hardness contribution* from each bin in the histogram.
- Resulting in a "harmonized" subset.



Hardness Harmonization

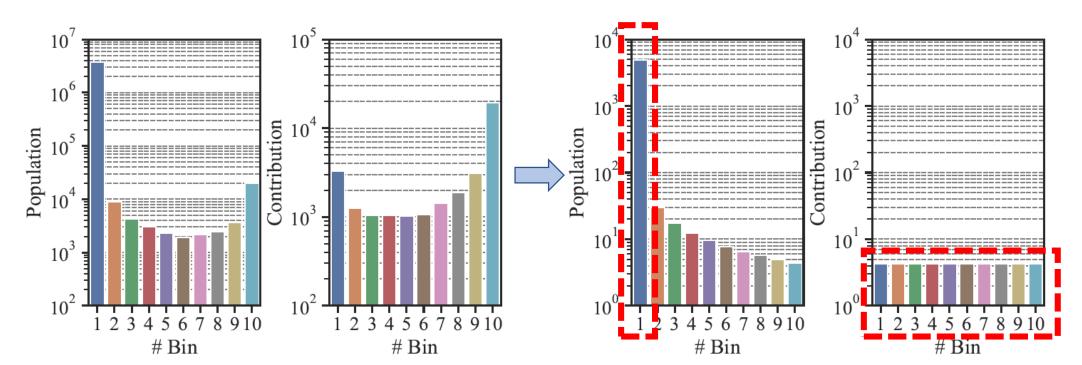
- Advantage:
 - weights of borderline samples are enhanced
 - effect of trivial/noise samples are reduced



Hardness Harmonization

• Problem?

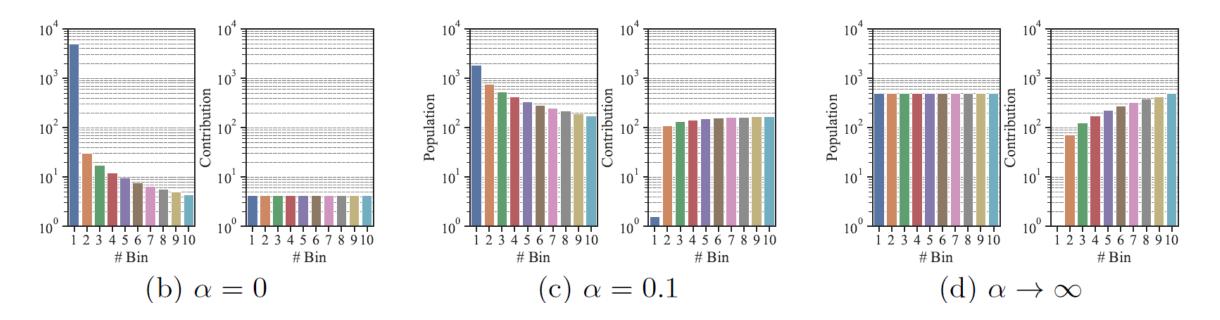
- population of trivial samples grow rapidly during the training
- simple harmonization leaves lots of trivial samples and slows down the training



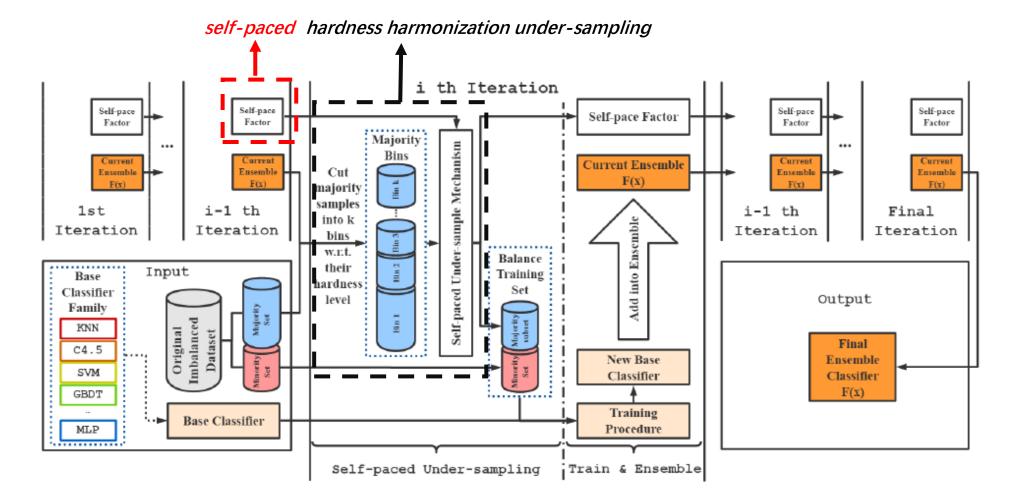
Our Second Algorithm

Self-paced Under-sample

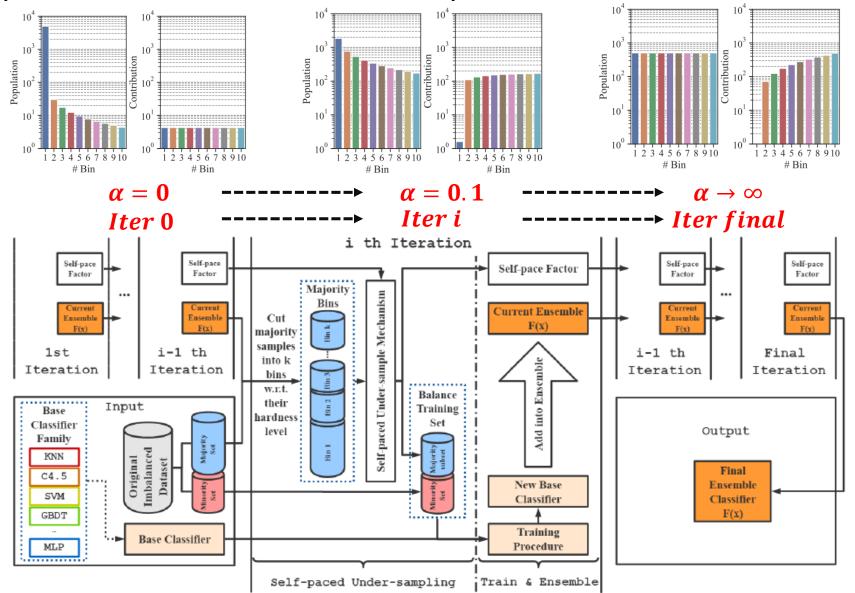
- introduce a self-paced factor α
 - a penalty factor to large population bins
- as α grows, we gradually focus on harder samples
- always keep a reasonable proportion of trivial samples



Self-paced Under-sample



Self-paced Under-sample



Self-paced Ensemble

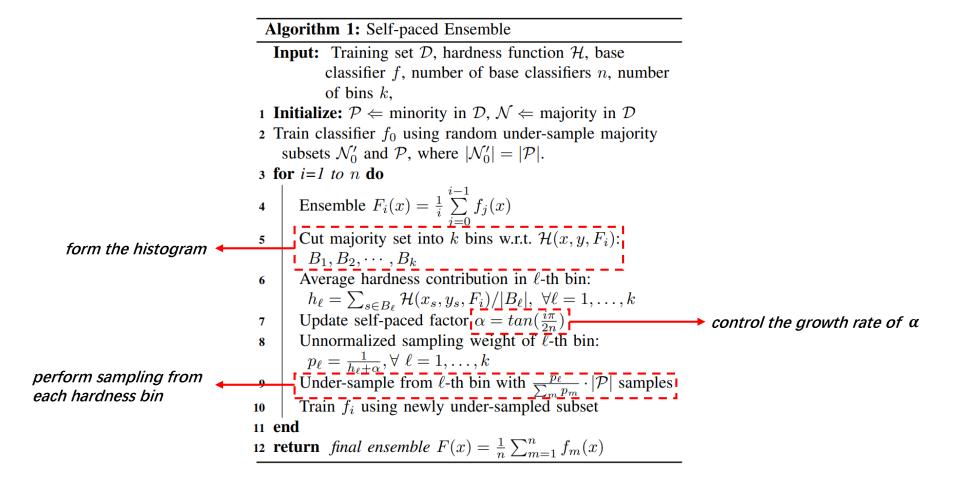
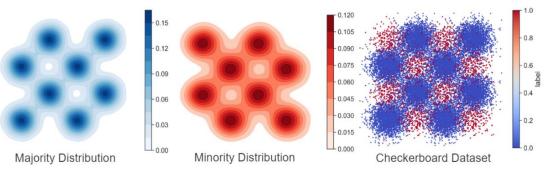


Table of contents

- Challenges and Motivation
- Self-paced Ensemble
- Classification Hardness
- Practical Algorithm
- Experimental Results

- Synthetic Dataset
 - 4×4 checkerboard with different level of class overlapping



• Real-world Datasets

Dataset	#Attribute	#Sample	Feature Format	Imbalance Ratio	Model
Credit Fraud	31	284,807	Numerical	578.88:1	KNN, DT, MLP
KDDCUP (DOS vs. PRB)	42	3,924,472	Integer & Categorical	94.48:1	AdaBoost ₁₀
KDDCUP (DOS vs. R2L)	42	3,884,496	Integer & Categorical	3448.82:1	AdaBoost ₁₀
Record Linkage	12	5,749,132	Numerical & Categorical	273.67:1	GBDT ₁₀
Payment Simulation	11	6,362,620	Numerical & Categorical	773.70:1	GBDT ₁₀

- Base Classifiers
 - K Nearest Neighbor classifier (KNN)
 - Decision Tree (DT)
 - Logistic Regression (LR)
 - Multi-Layer Perceptron (MLP)
 - Support Vector Machine (SVM)
 - Adaptive boosting (Adaboost)
 - Bootstrap aggregating (Bagging)
 - Random Forest (RandForest)
 - Gradient Boosting Decision Tree (GBDT)

• Baseline Methods

- 7 under-sampling methods (RandUnder, NearMiss, Clean, ENN, TomekLink, AllKNN, OSS)
- 4 over-sampling methods (RandOver, SMOTE, Border-SMOTE, ADASYN)
- 2 hybrid-sampling methods (SMOTE-ENN, SMOTE-Tomek)
- 6 ensemble methods (RUSBoost, SMOTEBoost, UnderBagging, SMOTEBagging, EasyEnsemble, BalanceCascade)

- Evaluation Criteria
 - Area under precision-recall curve (AUCPRC)
 - F1-score (F1)
 - Geometric Mean (GM)
 - Matthews correlation coefficient (MCC)

• Table: performance (AUCPRC) on the synthetic dataset.

Model	Hyper	RandUnder	Clean	SMOTE	\texttt{Easy}_{10}	$Cascade_{10}$	SPE_{10}
KNN	k_neighbors=5	0.281 ± 0.003	$0.382 {\pm} 0.000$	0.271 ± 0.003	0.411 ± 0.003	0.409 ± 0.005	0.498 ±0.004
DT	max_depth=10	$0.236 {\pm} 0.010$	$0.365 {\pm} 0.001$	$0.299 {\pm} 0.007$	$0.463 {\pm} 0.009$	$0.376 {\pm} 0.052$	0.566 ±0.011
MLP	hidden_unit=128	$0.562 {\pm} 0.017$	$0.138 {\pm} 0.035$	$0.615 {\pm} 0.009$	$0.610 {\pm} 0.004$	$0.582 {\pm} 0.005$	0.656 ±0.005
SVM	C=1000	$0.306 {\pm} 0.003$	$0.405 {\pm} 0.000$	$0.324 {\pm} 0.002$	$0.386 {\pm} 0.001$	$0.456 {\pm} 0.010$	0.518 ±0.004
$AdaBoost_{10}$	n_estimator=10	$0.226 {\pm} 0.019$	$0.362 {\pm} 0.000$	$0.297 {\pm} 0.004$	$0.487 {\pm} 0.017$	0.391 ± 0.013	0.570 ±0.008
Bagging ₁₀	n_estimator=10	0.273 ± 0.002	0.401 ± 0.000	$0.316 {\pm} 0.003$	$0.436 {\pm} 0.004$	$0.389 {\pm} 0.007$	0.568 ±0.005
RandForest ₁₀	n_estimator=10	0.260 ± 0.004	$0.229 {\pm} 0.000$	0.306 ± 0.011	$0.454 {\pm} 0.005$	0.402 ± 0.012	0.572 ±0.003
GBDT ₁₀	boost_rounds=10	$0.553 {\pm} 0.015$	$0.602 {\pm} 0.000$	$0.591 {\pm} 0.008$	$0.645 {\pm} 0.006$	$0.648 {\pm} 0.009$	0.680 ±0.003

• Table: performance on real-world datasets.

Dataset	Model	Metric	RandUnder	Clean	SMOTE	\mathtt{Easy}_{10}	$Cascade_{10}$	SPE ₁₀
		AUCPRC	0.052 ± 0.002	$0.677 {\pm} 0.000$	$0.352 {\pm} 0.000$	$0.162 {\pm} 0.012$	$0.676 {\pm} 0.015$	0.752 ±0.018
	KNN	F1	0.112 ± 0.007	$0.821 {\pm} 0.000$	$0.559 {\pm} 0.001$	$0.250 {\pm} 0.020$	$0.792 {\pm} 0.023$	0.843 ±0.016
		GM	0.228 ± 0.009	$0.822 {\pm} 0.000$	$0.593 {\pm} 0.001$	$0.399 {\pm} 0.025$	$0.810 {\pm} 0.001$	0.852 ±0.002
		MCC	0.222 ± 0.014	$0.822 {\pm} 0.000$	$0.592 {\pm} 0.001$	$0.650 {\pm} 0.004$	$0.815 {\pm} 0.006$	0.855 ±0.006
		AUCPRC	0.014 ± 0.001	$0.598 {\pm} 0.013$	$0.088 {\pm} 0.011$	$0.339 {\pm} 0.039$	$0.592 {\pm} 0.029$	0.783 ±0.015
Credit Fraud	DT	F1	0.032 ± 0.002	$0.767 {\pm} 0.004$	$0.177 {\pm} 0.006$	$0.478 {\pm} 0.021$	$0.737 {\pm} 0.023$	0.838 ±0.021
		GM	0.119 ± 0.003	$0.778 {\pm} 0.006$	$0.303 {\pm} 0.017$	$0.548 {\pm} 0.048$	$0.749 {\pm} 0.011$	0.843 ±0.007
		MCC	0.124 ± 0.001	$0.780 {\pm} 0.008$	$0.310 {\pm} 0.003$	$0.409 {\pm} 0.015$	$0.778 {\pm} 0.049$	0.831 ±0.008
		AUCPRC	0.225 ± 0.050	0.001 ± 0.000	$0.527 {\pm} 0.017$	0.605 ± 0.016	$0.738 {\pm} 0.009$	0.747 ±0.011
	MLP	F1	$0.388 {\pm} 0.047$	0.003 ± 0.000	$0.725 {\pm} 0.013$	$0.762 {\pm} 0.023$	$0.803 {\pm} 0.004$	0.811 ±0.010
	IVILF	GM	0.494 ± 0.040	$0.040 {\pm} 0.000$	$0.665 {\pm} 0.060$	$0.748 {\pm} 0.019$	$0.806 {\pm} 0.007$	0.828 ±0.003
		MCC	$0.178 {\pm} 0.008$	$0.000 {\pm} 0.000$	$0.718 {\pm} 0.006$	$0.705 {\pm} 0.004$	$0.744 {\pm} 0.046$	0.826 ±0.008
	AdaBoost ₁₀	AUCPRC	0.930 ± 0.012			$0.995 {\pm} 0.002$	1.000 ±0.000	1.000 ±0.000
KDDCUP		F1	0.962 ± 0.001			$0.997 {\pm} 0.000$	0.999 ±0.000	0.999 ±0.000
(DOS vs. PRB)		GM	$0.964 {\pm} 0.001$			$0.997 {\pm} 0.001$	$0.998 {\pm} 0.000$	0.999 ±0.000
		MCC	$0.956 {\pm} 0.004$			$0.992 {\pm} 0.001$	$0.993 {\pm} 0.003$	0.999 ±0.000
	AdaBoost ₁₀	AUCPRC	0.034 ± 0.005			0.108 ± 0.011	0.945 ± 0.005	0.999 ±0.001
KDDCUP		F1	0.050 ± 0.005			$0.259 {\pm} 0.058$	$0.965 {\pm} 0.005$	0.991 ±0.003
(DOS vs. R2L)		GM	0.164 ± 0.011			$0.329 {\pm} 0.015$	$0.967 {\pm} 0.008$	0.988±0.004
		MCC	0.175 ± 0.016			$0.214 {\pm} 0.004$	$0.905 {\pm} 0.056$	0.986 ±0.004
		AUCPRC	0.988 ± 0.011			$0.999 {\pm} 0.000$	1.000 ±0.000	1.000 ±0.000
Decend Linkson	CDDT	F1	0.995 ± 0.000			$0.996 {\pm} 0.000$	0.998 ±0.000	0.998 ±0.000
Record Linkage	GBDT ₁₀	GM	0.994 ± 0.002			$0.996 {\pm} 0.000$	0.998 ±0.000	0.998 ±0.000
		MCC	$0.780 {\pm} 0.000$			$0.884 {\pm} 0.000$	$0.940 {\pm} 0.000$	0.998 ±0.000
		AUCPRC	0.278 ± 0.030			$0.676 {\pm} 0.058$	$0.776 {\pm} 0.004$	0.944 ±0.001
Dovement Simulation	CPDT	F1	0.446 ± 0.030			$0.709 {\pm} 0.021$	$0.851 {\pm} 0.003$	0.885 ±0.001
Payment Simulation	GBDT ₁₀	GM	$0.530 {\pm} 0.020$			$0.735 {\pm} 0.011$	$0.851 {\pm} 0.001$	0.885 ±0.001
		MCC	0.290 ± 0.023			$0.722 {\pm} 0.015$	$0.856 {\pm} 0.002$	0.876 ±0.001

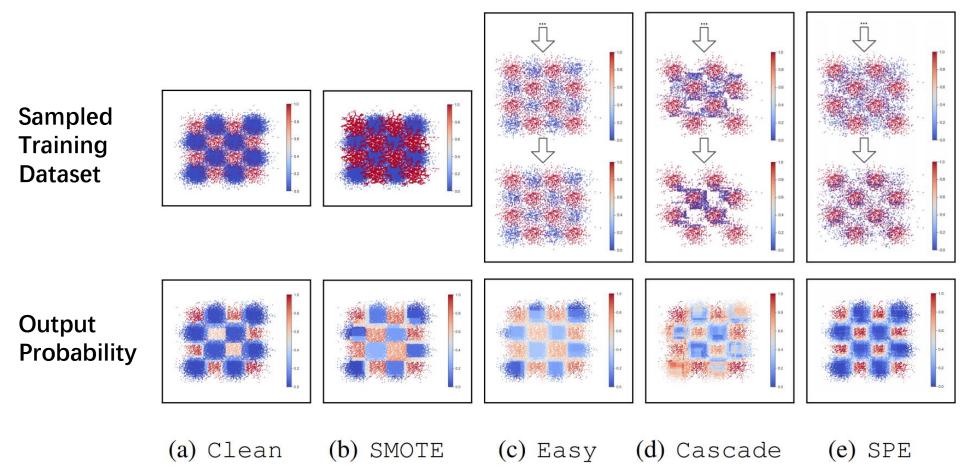
• Table: performance of resampling methods (on CreditFraud task).

Category	Method	LR	KNN	DT	$AdaBoost_{10}$	$GBDT_{10}$	#Sample	Re-sampling Time(s)
No re-sampling	ORG	0.587 ± 0.001	0.721 ± 0.000	0.632 ± 0.011	0.663 ± 0.026	0.803 ± 0.001	170885	
	RandUnder	0.022 ± 0.008	0.068 ± 0.000	0.011 ± 0.001	0.013 ± 0.000	0.511 ± 0.096	632	0.07
	NearMiss	0.003 ± 0.003	0.010 ± 0.009	0.002 ± 0.000	0.002 ± 0.001	0.050 ± 0.000	632	2.06
	Clean	0.741 ± 0.018	0.697 ± 0.010	0.727 ± 0.029	$0.698 {\pm} 0.032$	$0.810 {\pm} 0.003$	170,680	428.88
Under-sampling	ENN	0.692 ± 0.036	$0.668 {\pm} 0.013$	0.637 ± 0.021	0.644 ± 0.026	$0.799 {\pm} 0.004$	170,779	423.86
	TomekLink	0.699 ± 0.050	$0.650 {\pm} 0.031$	0.671 ± 0.018	$0.659 {\pm} 0.027$	$0.814 {\pm} 0.007$	170,865	270.09
	AllKNN	0.692 ± 0.041	$0.668 {\pm} 0.012$	0.652 ± 0.023	$0.652 {\pm} 0.015$	$0.808 {\pm} 0.002$	170,765	1066.48
	OSS	0.711 ± 0.056	$0.650 {\pm} 0.029$	$0.671 {\pm} 0.025$	$0.666 {\pm} 0.009$	$0.825 {\pm} 0.016$	163,863	240.95
	RandOver	0.052 ± 0.000	0.532 ± 0.000	0.051 ± 0.001	0.561 ± 0.010	0.706 ± 0.013	341,138	0.14
Over-sampling	SMOTE	0.046 ± 0.001	$0.362 {\pm} 0.005$	0.093 ± 0.002	$0.087 {\pm} 0.005$	0.672 ± 0.026	341,138	1.23
Over-sampling	ADASYN	0.017 ± 0.001	$0.360 {\pm} 0.004$	0.031 ± 0.001	$0.035 {\pm} 0.007$	0.496 ± 0.081	341,141	1.87
	BorderSMOTE	0.067 ± 0.006	$0.579 {\pm} 0.010$	0.145 ± 0.003	0.126 ± 0.011	0.242 ± 0.020	341,138	1.89
Unbrid compline	SMOTEENN	0.045 ± 0.001	0.329 ± 0.006	0.084 ± 0.004	0.074 ± 0.012	0.665 ± 0.017	340,831	478.36
Hybrid-sampling	SMOTETomek	0.046 ± 0.001	$0.362 {\pm} 0.004$	0.094 ± 0.004	0.094 ± 0.004	$0.682 {\pm} 0.033$	<u>341,138</u>	293.75
Under-sampling + Ensemble	SPE ₁₀	0.755 ±0.003	0.767 ±0.001	0.783 ±0.015	0.808 ±0.004	0.849 ±0.002	632×10	0.116×10

• Table: performance of ensemble methods (on CreditFraud task).

# Base Classifiers	Metric	${\tt RUSBoost}_n$	$\texttt{SMOTEBoost}_n$	${\tt UnderBagging}_n$	${\tt SMOTEBagging}_n$	$\mathtt{Cascade}_n$	\mathtt{SPE}_n
	AUCPRC	0.424 ± 0.061	0.762 ± 0.011	0.355 ± 0.049	0.782 ± 0.007	0.610 ± 0.051	0.783 ±0.015
	F 1	0.622 ± 0.055	0.842 ±0.012	$0.555 {\pm} 0.053$	$0.818 {\pm} 0.002$	$0.757 {\pm} 0.031$	$0.832 {\pm} 0.018$
n = 10	GM	0.637 ± 0.045	0.847 ±0.014	0.577 ± 0.044	0.819 ± 0.002	0.760 ± 0.031	$0.835 {\pm} 0.018$
	MCC	$0.189 {\pm} 0.016$	0.822 ± 0.018	$0.576 {\pm} 0.044$	0.819 ± 0.002	$0.759 {\pm} 0.031$	0.835 ±0.018
	# Sample	6,320	1,723,295	6,320	1,876,204	6,320	6,320
	AUCPRC	0.550 ± 0.032	0.783 ± 0.005	0.519 ± 0.125	0.804±0.013	$0.673 {\pm} 0.008$	0.811 ±0.005
	F 1	0.722 ± 0.021	$0.840 {\pm} 0.009$	$0.678 {\pm} 0.088$	$0.833 {\pm} 0.005$	0.779 ± 0.012	0.856 ±0.008
n = 20	GM	0.725 ± 0.019	$0.844 {\pm} 0.009$	$0.685 {\pm} 0.078$	$0.837 {\pm} 0.005$	$0.785 {\pm} 0.010$	0.858 ±0.010
	MCC	0.202 ± 0.006	$0.833 {\pm} 0.005$	$0.685 {\pm} 0.078$	0.837 ± 0.005	$0.784 {\pm} 0.010$	0.857 ±0.010
	# Sample	12,640	3,478,690	12,640	3,752,408	12,640	12,640
	AUCPRC	0.714 ± 0.025	0.786 ± 0.009	0.676 ± 0.022	0.818 ± 0.004	0.696 ± 0.028	0.822 ±0.006
	F 1	0.784 ± 0.010	0.825 ± 0.010	0.773 ± 0.006	$0.839 {\pm} 0.009$	$0.776 {\pm} 0.009$	0.865 ±0.012
n = 50	GM	$0.784 {\pm} 0.010$	$0.830 {\pm} 0.010$	$0.774 {\pm} 0.006$	$0.843 {\pm} 0.008$	$0.785 {\pm} 0.011$	0.868 ±0.012
	MCC	$0.297 {\pm} 0.015$	<u>0.794±0.007</u>	$0.774 {\pm} 0.006$	0.842 ± 0.008	$0.784 {\pm} 0.011$	0.868 ±0.012
	# Sample	31,600	8,937,475	31,600	9,381,020	31,600	31,600

• Visualization on the synthetic dataset:



• Robust to class overlapping & outliers:

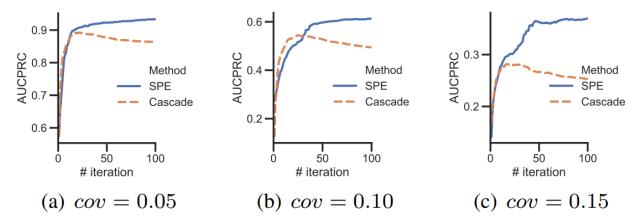


Fig. 5. Training curve under different level of overlap.

• Robust to missing values:

Missing Ratio	$RUSBoost_{10}$	$\texttt{SMOTEBoost}_{10}$	${\tt UnderBagging}_{10}$	${\tt SMOTEBagging}_{10}$	$Cascade_{10}$	SPE_{10}
0%	0.424 ± 0.061	0.762 ± 0.011	0.355 ± 0.049	$0.782 {\pm} 0.007$	0.610 ± 0.051	0.783 ±0.015
25%	0.277 ± 0.043	0.652 ± 0.042	$0.258 {\pm} 0.053$	$0.684 {\pm} 0.019$	0.513 ± 0.043	0.699 ±0.026
50%	0.206 ± 0.025	0.529 ± 0.015	0.161 ± 0.013	0.503 ± 0.020	$0.442 {\pm} 0.035$	0.577 ±0.016
75%	$0.084 {\pm} 0.015$	$0.267 {\pm} 0.019$	0.046 ± 0.006	$0.185 {\pm} 0.028$	$0.234 {\pm} 0.023$	0.374 ±0.028

Thanks!

Code URL: <u>github.com/ZhiningLiu1998/self-paced-ensemble</u>

36th IEEE International Conference on Data Engineering (ICDE 2020)